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ABSTRACT

In situ generated and crystallographically well-defined, isolated palladium complexes derived from seven novel air-stable secondary phosphine
oxides or chlorides enabled challenging Kumada-Corriu cross-couplings of unactivated alkyl chlorides bearing �-hydrogens and proved
applicable to transformations of alkyl-substituted organometallics.

Transition-metal-catalyzed cross-coupling reactions represent
indispensable tools for the regioselective preparation of
substituted (hetero)arenes.1 Generally, organomagnesium
reagents are more readily available than alternative organo-
metallic nucleophiles.2 Therefore, catalytic cross-couplings
of Grignard reagents constitute valuable tools for streamlining
arene syntheses. Particularly, the development of stabilizing
ligands resulted in broadly applicable protocols for metal-
catalyzed transformations of aryl or alkenyl halides as
electrophiles.1 However, couplings of unactivated alkyl
halides, particularly when bearing �-hydrogens, continue to
be challenging, since facile �-hydride elimination leads to
undesired byproduct formation.3,4 Alkyl chlorides are argu-
ably the most useful class of alkyl halides due to their lower
costs, yet they are more difficult to activate because of the
inherently high C-Cl bond strength.5 As a consequence,
efficient palladium-catalyzed6 Kumada-Corriu cross-cou-
plings with unactivated alkyl chlorides7 were, to the best of

our knowledge, only accomplished with complexes derived
from either electron-rich tertiary phosphines8 or N-hetero-
cyclic carbenes9 as phosphine mimetics. Contrarily, sec-
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ondary phosphine oxides (SPO) or chlorides were thus
far not used for cross-couplings of unactivated alkyl
halides.10 Accordingly, we became interested in develop-
ing novel air-stable (pre)ligands for catalytic transforma-
tions of inexpensive alkyl chlorides, on which we wish
to report herein.

At the outset of our studies, we tested representative
known11 secondary phosphine oxides 4 in the cross-coupling
of unactivated alkyl chloride 2a (Table 1). Unfortunately,
previously used preligands 4a-4d provided only unsatisfac-

tory results (entries 1-5), as did biphenyl monophosphine
oxides 4e-4g (entries 6-8). Thus, we set out to prepare
new sterically hindered SPO preligands (Supporting Infor-
mation). Interestingly, air- and moisture-stable preligands 4h
(Figure 1) and 4i bearing either N-arylpyrrole or N-arylindole

substituents,12 respectively, outperformed the corresponding
biphenyl-based preligands 4e-4g (entries 6-10). Likewise,
air-stable secondary phosphine chloride 5a-5c (Figure 1)
allowed for high-yielding cross-couplings of alkyl chloride
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P. Angew. Chem., Int. Ed. 2007, 46, 6364–6367. (k) Lerebours, R.; Wolf,
C. J. Am. Chem. Soc. 2006, 128, 13052–13053. (l) Lerebours, R.; Camacho-
Soto, A.; Wolf, C. J. Org. Chem. 2005, 70, 8601–8604. (m) Ackermann,
L. Org. Lett. 2005, 7, 3123–3125. (n) Wolf, C.; Lerebours, R. Org. Lett.
2004, 6, 1147–1150. (o) Li, G. Y. J. Org. Chem. 2002, 67, 3643–3650. (p)
Li, G. Y. Angew. Chem., Int. Ed. 2001, 40, 1513–1516, and references cited
therein.

(12) For tertiary phosphines bearing 2-substituted N-heteroarenes, see:
(a) Sergeev, A. G.; Schulz, T.; Torborg, C.; Spannenberg, A.; Neumann,
H.; Beller, M. Angew. Chem., Int. Ed. 2009, 48, 7595–7599. (b) Harkal,
S.; Rataboul, F.; Zapf, A.; Fuhrmann, C.; Riermeier, T.; Monsees, A.; Beller,
M. AdV. Synth. Catal. 2004, 346, 1742–1748. (c) Rataboul, F.; Zapf, A.;
Jackstell, R.; Harkal, S.; Riermeier, T.; Monsees, A.; Dingerdissen, U.;
Beller, M. Chem.sEur. J. 2004, 10, 2983–2990. (d) Zapf, A.; Jackstell,
R.; Rataboul, F.; Riermeier, T.; Monsees, A.; Fuhrmann, C.; Shaikh, N.;
Dingerdissen, U.; Beller, M. Chem. Commun. 2004, 38–39. (e) Zapf, A.;
Beller, M. Chem. Commun. 2005, 431–440, and references cited therein.

Table 1. Ligand Optimization Studiesa

a Reaction conditions: 1a (3.0 mmol), 2a (2.0 mmol), Pd(OAc)2 (4.0
mol %), L (4.0 mol %), NMP (5.0 mL); yields of isolated products. b Ar )
4-MeOC6H4.

Figure 1. Molecular structures of (pre)ligands 4h and 5b.13
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2a (entries 11-13). Importantly, this remarkable catalytic
efficacy was not due to a potential formation of tertiary
phosphines 6a or 6b, as was illustrated through their indepen-
dent synthesis and use in catalysis (entries 14 and 15).

Subsequently, we probed the most active catalytic systems
in Kumada-Corriu cross-couplings of further unactivated
alkyl chlorides 2 (Table 2). Here, the catalyst derived from

ligand 5b proved superior (entries 1-4), enabling the
synthesis of various regioselectively alkylated arenes 3.

Notably, the catalytic system exhibited a useful chemose-
lectivity, thereby tolerating valuable functional groups, such
as an ester (entry 14), a ketone (entries 15 and 16), or a
nitrile (entries 17 and 18). Thus, only minor amounts (<10%)
of products stemming from nucleophilic addition reactions
were observed.

A side reaction was represented by homocouplings of
alkyl chlorides 2, which was addressed through the use
of alkyl bromides as electrophiles, among others, with a
catalyst derived from preligand 4d (entries 5, 8, 11, and
13).

Given the remarkable activity of palladium complexes
derived from ligands 5b and 5c, we explored their coordina-
tion chemistry. As a result, structurally well-defined com-
plexes 7a and 7b were prepared in high yields (Scheme 1).14

Notably, homobimetallic complex 7a highlighted a mono-
phosphine-coordinated palladium, a general15 feature of
relevance for achieving high efficacy in challenging cross-
coupling reactions.

Importantly, preformed palladium complexes 7a and 7b
showed an improved catalytic performance toward cross-
coupling of unactivated alkyl chloride 2a, which allowed the
use of a lower catalyst loading (Scheme 2).

Finally, isolated palladium catalysts 7a and 7b were
evaluated for cross-coupling reactions of alkyl-substituted
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ac.uk).
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(+44)1223-336-033; or deposit@ccdc.cam.ac.uk).
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Table 2. Kumada-Corriu Cross-Couplings of Alkyl Chlorides
2a

a Reaction conditions: 1 (3.0 mmol), 2 (2.0 mmol), Pd(OAc)2 (4.0 mol
%), L (4.0 mol %), NMP (5.0 mL), 25 °C, 20 h. b Using n-AlkBr (2.0
mmol) instead of 2. c 60 °C.

Scheme 1. Synthesis and Molecular Structure of Complexes 7
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organometallic nucleophiles (Table 3). Here, complex 7a
provided optimal results in Kumada-Corriu reactions of
aromatic11 electrophiles 2 (entries 1-4). Notably, catalyst
7a was not restricted to the use of basic Grignard reagents
as nucleophilic substrates but also proved applicable to the
synthesis of functionalized arenes 3t-3y through Negishi16

cross-coupling technology (entries 9-14).17

In summary, we have reported on the synthesis of seven
novel air-stable secondary phosphine oxide or chloride
(pre)ligands and their unprecedented use in challenging cross-
couplings of unactivated alkyl halides. Specifically, in situ
generated as well as isolated well-defined complexes of
secondary phosphine chlorides enabled Kumada-Corriu
cross-coupling of alkyl chlorides bearing �-hydrogens and
could be employed for C(sp2)-C(sp3) bond formations
through cross-couplings with alkyl magnesium or alkyl zinc
reagents.
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Table 3. Kumada-Corriu and Negishi Cross-Couplings with
Alkyl-Substituted Nucelophiles 1a

a Reaction conditions. Kumada-Corriu: ArBr (1.0 mmol), ArMgX (1.5
mmol), 7 (2.0 mol %), THF (2.0 mL), 60 °C, 24 h. Negishi: ArI (1.0 mmol),
ArZnCl (1.5 mmol), 7a (2.0 mol %), THF (2.0 mL), 60 °C, 24 h.

Scheme 2. Cross-Couplings with Isolated Complexes 7
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