Air-Stable Secondary Phosphine Oxide or Chloride (Pre)Ligands for Cross-Couplings of Unactivated Alkyl Chlorides

Lutz Ackermann,*,† Anant R. Kapdi,† and Carola Schulzke[‡]

Institut für Organische und Biomolekulare Chemie and Institut für Anorganische Chemie, Georg-August-Universitaet, Tammannstrasse 2, 37077 Goettingen, Germany

lutz.ackermann@chemie.uni-goettingen.de

Received March 19, 2010

ABSTRACT

In situ generated and crystallographically well-defined, isolated palladium complexes derived from seven novel air-stable secondary phosphine oxides or chlorides enabled challenging Kumada–Corriu cross-couplings of unactivated alkyl chlorides bearing β -hydrogens and proved applicable to transformations of alkyl-substituted organometallics.

Transition-metal-catalyzed cross-coupling reactions represent indispensable tools for the regioselective preparation of substituted (hetero)arenes.¹ Generally, organomagnesium reagents are more readily available than alternative organometallic nucleophiles.² Therefore, catalytic cross-couplings of Grignard reagents constitute valuable tools for streamlining arene syntheses. Particularly, the development of stabilizing ligands resulted in broadly applicable protocols for metalcatalyzed transformations of aryl or alkenyl halides as electrophiles.¹ However, couplings of unactivated alkyl halides, particularly when bearing β -hydrogens, continue to be challenging, since facile β -hydride elimination leads to undesired byproduct formation.^{3,4} Alkyl chlorides are arguably the most useful class of alkyl halides due to their lower costs, yet they are more difficult to activate because of the inherently high C-Cl bond strength.⁵ As a consequence, efficient palladium-catalyzed⁶ Kumada-Corriu cross-couplings with unactivated alkyl chlorides⁷ were, to the best of our knowledge, only accomplished with complexes derived from either electron-rich tertiary phosphines⁸ or N-heterocyclic carbenes⁹ as phosphine mimetics. Contrarily, sec-

[†] Institut für Organische and Biomolekulare Chemie.

[‡] Institut für Anorganische Chemie.

^{(1) (}a) Ackermann, L., Ed. *Modern Arylation Methods*; Wiley-VCH: Weinheim, 2009. (b) de Meijere, A.; Diederich, F., Eds. *Metal-Catalyzed Cross-Coupling Reactions*, 2nd ed.; Wiley-VCH: Weinheim, 2004.

^{(2) (}a) Knochel, P., Ed. *Handbook of Functionalized Organometallics*; Wiley-VCH: Weinheim, 2005. (b) Ila, H.; Baron, O.; Wagner, A. J.; Knochel, P. *Chem. Commun.* **2006**, 583–593.

⁽³⁾ Reviews: (a) Rudolph, A.; Lautens, M. Angew. Chem., Int. Ed. 2009, 48, 2656–2670. (b) Nakamura, M.; Ito, S. Modern Arylation Methods; Ackermann, L., Ed.; Wiley-VCH: Weinheim, 2009; pp 155–181. (c) Terao, J.; Kambe, N. Acc. Chem. Res. 2008, 41, 1545–1554. (d) Frisch, A. C.; Beller, M. Angew. Chem., Int. Ed. 2005, 44, 674–688. (e) Netherton, M. R.; Fu, G. C. Adv. Synth. Catal. 2004, 346, 1525–1532. (f) Cárdenas, D. J. Angew. Chem., Int. Ed. 2003, 42, 384–387.

⁽⁴⁾ For pioneering early examples, see. (a) Ishiyama, T.; Abe, S.; Miyaura, N.; Suzuki, A. *Chem. Lett.* **1992**, 691–694. (b) Devasagayaraj, A.; Stuedemann, T.; Knochel, P. *Angew. Chem., Int. Ed. Engl.* **1996**, *34*, 2723–2725.

⁽⁵⁾ For select examples of pioneering studies on metal-catalyzed crosscouplings with unactivated alkyl chlorides, see: (a) Kirchhoff, J.; Dai, C.; Fu, G. C. Angew. Chem., Int. Ed. **2002**, *41*, 1945–1947. (b) Netherton, M. R.; Dai, C.; Neuschtz, K.; Fu, G. C. J. Am. Chem. Soc. **2001**, *123*, 10099– 10100.

⁽⁶⁾ For representative examples of the use of transition metals other than palladium for couplings with unactivated alkyl chlorides, see: [Ni]. (a) Vechorkin, O.; Proust, V.; Hu, X. J. Am. Chem. Soc. 2009, 131, 9756–9766. (b) Terao, J.; Watanabe, H.; Ikumi, A.; Kuniyasu, H.; Kambe, N. J. Am. Chem. Soc. 2002, 124, 4222–4223. [Fe] (c) Bedford, R. B.; Bruce, D. W.; Frost, R. M.; Hird, M. Chem. Commun. 2005, 4161–4163. (d) Martin, R.; Fürstner, A. Angew. Chem., Int. Ed. 2004, 43, 3955–3957. (e) Nagano, T.; Hayashi, T. Org. Lett. 2004, 6, 1297–1299. (f) Nakamura, M.; Matsuo, K.; Ito, S.; Nakamura, E. J. Am. Chem. Soc. 2004, 126, 3686–3687. [Cu] (g) Cahiez, G.; Gager, O.; Buendia, J. Synlett 2010, 299–303. (h) Terao, J.; Todo, H.; Begum, S. A.; Kuniyasu, H.; Kambe, N. Angew. Chem., Int. Ed. 2007, 46, 2086–2089. [Co] (i) Ohmiya, H.; Yorimitsu, H.; Oshima, K. J. Am. Chem. Soc. 2006, 128, 1886–1889, and references cited therein. See also, ref 2.

ondary phosphine oxides (SPO) or chlorides were thus far not used for cross-couplings of unactivated alkyl halides.¹⁰ Accordingly, we became interested in developing novel air-stable (pre)ligands for catalytic transformations of inexpensive alkyl chlorides, on which we wish to report herein.

At the outset of our studies, we tested representative known¹¹ secondary phosphine oxides **4** in the cross-coupling of unactivated alkyl chloride **2a** (Table 1). Unfortunately, previously used preligands 4a-4d provided only unsatisfac-

^{*a*} Reaction conditions: **1a** (3.0 mmol), **2a** (2.0 mmol), Pd(OAc)₂ (4.0 mol %), L (4.0 mol %), NMP (5.0 mL); yields of isolated products. ^{*b*} Ar = 4-MeOC₆H₄.

tory results (entries 1-5), as did biphenyl monophosphine oxides 4e-4g (entries 6-8). Thus, we set out to prepare new sterically hindered SPO preligands (Supporting Information). Interestingly, air- and moisture-stable preligands 4h (Figure 1) and 4i bearing either *N*-arylpyrrole or *N*-arylindole

Figure 1. Molecular structures of (pre)ligands 4h and 5b.¹³

substituents,¹² respectively, outperformed the corresponding biphenyl-based preligands 4e-4g (entries 6–10). Likewise, air-stable secondary phosphine chloride 5a-5c (Figure 1) allowed for high-yielding cross-couplings of alkyl chloride

(7) For select examples of palladium-catalyzed cross-couplings with other alkyl (pseudo)halides, see: (a) Terao, J.; Naitoh, Y.; Kuniyasu, H.; Kambe, N. *Chem. Commun.* **2007**, 825–827. (b) Yang, L.-M.; Huang, L.-F.; Luh, T.-Y. *Org. Lett.* **2004**, *6*, 1461–1463. (c) Terao, J.; Naitoh, Y.; Kuniyasu, H.; Kambe, N. *Chem. Lett.* **2003**, *32*, 890–891, and references cited therein.

(8) Frisch, A. C.; Shaikh, N.; Zapf, A.; Beller, M. Angew. Chem., Int. Ed. 2002, 41, 4056–4059.

(9) Frisch, A. C.; Rataboul, F.; Zapf, A.; Beller, M. J. Organomet. Chem. 2003, 687, 403–409.

(10) Reviews: (a) Ackermann, L. Synlett 2007, 507–526. (b) Nemoto,
T.; Hamada, Y. Chem. Rec. 2007, 7, 150–158. (c) Ackermann, L. Synthesis
2006, 1557–1571. (d) Ackermann, L.; Born, R.; Spatz, J. H.; Althammer,
A.; Gschrei, C. J. Pure Appl. Chem. 2006, 78, 209–214. (e) Dubrovina,
N. V.; Börner, A. Angew. Chem., Int. Ed. 2004, 43, 5883–5886.

(11) For representative examples of alkyl-substituted secondary phosphine chlorides or oxides in transition-metal-catalyzed arylation reactions, see: (a) Ackermann, L.; Potukuchi, H. K.; Kapdi, A. R.; Schulzke, C. Chem.-Eur. J. 2010, 16, 3300-3303. (b) Ackermann, L.; Vicente, R.; Hofmann, N. Org. Lett. 2009, 11, 4274-4276. (c) Yang, D. X.; Colletti, S. L.; Wu, K.; Song, M.; Li, G. Y.; Shen, H. C. Org. Lett. 2009, 11, 381-384. (d) Xu, H.; Ekoue-Kovi, K.; Wolf, C. J. Org. Chem. 2008, 73, 7638-7650. (e) Ackermann, L.; Vicente, R.; Althammer, A. Org. Lett. 2008, 10, 2299-2302. (f) Wolf, C.; Xu, H. J. Org. Chem. 2008, 73, 162-167. (g) Billingsley, K. L.; Buchwald, S. L. Angew. Chem., Int. Ed. 2008, 47, 4695-4698. (h) Zhang, Z.; Hu, Z.; Yu, Z.; Lei, P.; Chi, H.; Wang, Y.; He, R. Tetrahedron Lett. 2007, 48, 2415-2419. (i) Lerebours, R.; Wolf, C. Org. Lett. 2007, 9, 2737-2740. (j) Ackermann, L.; Born, R.; Álvarez-Bercedo, P. Angew. Chem., Int. Ed. 2007, 46, 6364-6367. (k) Lerebours, R.; Wolf, C. J. Am. Chem. Soc. 2006, 128, 13052-13053. (1) Lerebours, R.; Camacho-Soto, A.; Wolf, C. J. Org. Chem. 2005, 70, 8601-8604. (m) Ackermann, L. Org. Lett. 2005, 7, 3123-3125. (n) Wolf, C.; Lerebours, R. Org. Lett. 2004, 6, 1147-1150. (o) Li, G. Y. J. Org. Chem. 2002, 67, 3643-3650. (p) Li, G. Y. Angew. Chem., Int. Ed. 2001, 40, 1513-1516, and references cited therein

(12) For tertiary phosphines bearing 2-substituted N-heteroarenes, see:
(a) Sergeev, A. G.; Schulz, T.; Torborg, C.; Spannenberg, A.; Neumann, H.; Beller, M. Angew. Chem., Int. Ed. 2009, 48, 7595–7599. (b) Harkal, S.; Rataboul, F.; Zapf, A.; Fuhrmann, C.; Riermeier, T.; Monsees, A.; Beller, M. Adv. Synth. Catal. 2004, 346, 1742–1748. (c) Rataboul, F.; Zapf, A.; Jackstell, R.; Harkal, S.; Riermeier, T.; Monsees, A.; Dingerdissen, U.; Beller, M. Chem. – Eur. J. 2004, 10, 2983–2990. (d) Zapf, A.; Jackstell, R.; Rataboul, F.; Riermeier, T.; Monsees, A.; Fuhrmann, C.; Shaikh, N.; Dingerdissen, U.; Beller, M. Chem. Commun. 2005, 431–440, and references cited therein.

2a (entries 11-13). Importantly, this remarkable catalytic efficacy was not due to a potential formation of tertiary phosphines **6a** or **6b**, as was illustrated through their independent synthesis and use in catalysis (entries 14 and 15).

Subsequently, we probed the most active catalytic systems in Kumada–Corriu cross-couplings of further unactivated alkyl chlorides 2 (Table 2). Here, the catalyst derived from

Table 2. Kumada–Corriu Cross-Couplings of Alkyl Chlorides 2^a

^{*a*} Reaction conditions: **1** (3.0 mmol), **2** (2.0 mmol), Pd(OAc)₂ (4.0 mol %), L (4.0 mol %), NMP (5.0 mL), 25 °C, 20 h. ^{*b*} Using *n*-AlkBr (2.0 mmol) instead of **2**. ^{*c*} 60 °C.

ligand **5b** proved superior (entries 1-4), enabling the synthesis of various regioselectively alkylated arenes **3**.

Notably, the catalytic system exhibited a useful chemoselectivity, thereby tolerating valuable functional groups, such as an ester (entry 14), a ketone (entries 15 and 16), or a nitrile (entries 17 and 18). Thus, only minor amounts (<10%) of products stemming from nucleophilic addition reactions were observed.

A side reaction was represented by homocouplings of alkyl chlorides **2**, which was addressed through the use of alkyl bromides as electrophiles, among others, with a catalyst derived from preligand **4d** (entries 5, 8, 11, and 13).

Given the remarkable activity of palladium complexes derived from ligands **5b** and **5c**, we explored their coordination chemistry. As a result, structurally well-defined complexes **7a** and **7b** were prepared in high yields (Scheme 1).¹⁴

Notably, homobimetallic complex 7a highlighted a monophosphine-coordinated palladium, a general¹⁵ feature of relevance for achieving high efficacy in challenging crosscoupling reactions.

Importantly, preformed palladium complexes **7a** and **7b** showed an improved catalytic performance toward crosscoupling of unactivated alkyl chloride **2a**, which allowed the use of a lower catalyst loading (Scheme 2).

Finally, isolated palladium catalysts **7a** and **7b** were evaluated for cross-coupling reactions of alkyl-substituted

⁽¹³⁾ CCDC-713169 and CCDC-715042 contain the supplementary crystallographic data for (pre)ligands **4h** and **5b**, respectively. The data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB21EZ, UK; fax (+44)1223-336-033; or deposit@ccdc.cam.ac.uk).

⁽¹⁴⁾ CCDC-731586 contains the supplementary crystallographic data for palladium(II) complex **7a**. The data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB21EZ, UK; fax (+44)1223-336-033; or deposit@ccdc.cam.ac.uk).

⁽¹⁵⁾ Christmann, U.; Vilar, R. Angew. Chem., Int. Ed. 2005, 44, 366-374.

Table 3. Kumada–Corriu and Negishi Cross-Couplings withAlkyl-Substituted Nucelophiles 1^a

,	Alk−M + (X	[Pd] (2.0 mol %)	Alk	
	1	2	60 °C, 24 h	3	
entry	1	[Pd]	3		yield
1	- D-M-Cl	7a	Et	2	92%
2	n-BuivigCl	7b	OMe	3m	79%
3	DAG	7a	Ph	3n	87%
4	BnMgCl	7b	OMe		75%
5	AllylMgBr	7a	ОМе	30	82%
6	<i>n</i> -HexMgBr	7a	л-Ви	3р	85%
7	<i>n</i> -DecMgBr	7a	n-Oct	3q	79%
8	c-PrMgBr	7a	ОМе	3r	84%
9	n-BuZnCl	7a	Et	3s	70%
10	n-BuZnCl	7 a	EtCO2Et	3t	84%
11	n-HexZnCl	7a	n-Bu	3u	87%
12	BnZnCl	7a	Ph	3v	93%
13	c-PrZnCl	7a	△ Ph	3w	72%
14	n-BuZnCl	7a	EtMe	3x	88%

^{*a*} Reaction conditions. Kumada–Corriu: ArBr (1.0 mmol), ArMgX (1.5 mmol), **7** (2.0 mol %), THF (2.0 mL), 60 °C, 24 h. Negishi: ArI (1.0 mmol), ArZnCl (1.5 mmol), **7a** (2.0 mol %), THF (2.0 mL), 60 °C, 24 h.

organometallic nucleophiles (Table 3). Here, complex **7a** provided optimal results in Kumada–Corriu reactions of aromatic¹¹ electrophiles **2** (entries 1–4). Notably, catalyst **7a** was not restricted to the use of basic Grignard reagents as nucleophilic substrates but also proved applicable to the synthesis of functionalized arenes **3t–3y** through Negishi¹⁶ cross-coupling technology (entries 9–14).¹⁷

In summary, we have reported on the synthesis of seven novel air-stable secondary phosphine oxide or chloride (pre)ligands and their unprecedented use in challenging crosscouplings of unactivated alkyl halides. Specifically, in situ generated as well as isolated well-defined complexes of secondary phosphine chlorides enabled Kumada–Corriu cross-coupling of alkyl chlorides bearing β -hydrogens and could be employed for C(sp²)–C(sp³) bond formations through cross-couplings with alkyl magnesium or alkyl zinc reagents.

Acknowledgment. Support by the DFG and the Alexander-von-Humboldt foundation (fellowship to A.K.) is gratefully acknowledged.

Supporting Information Available: Experimental procedures, characterization data, and ¹H and ¹³C NMR spectra for new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

OL100658Y

⁽¹⁶⁾ For representative examples of Negishi cross-coupling reactions, see: (a) Negishi, E.; Valente, L. F.; Kobayashi, M. J. Am. Chem. Soc. **1980**, *102*, 3298–3299. (b) Thaler, T.; Haag, B.; Gavryushin, A.; Schober, K.; Hartmann, E.; Gschwind, R. M.; Zipse, H.; Mayer, P.; Knochel, P. Nat. Chem. **2010**, 2, 125–130, and references cited therein.

⁽¹⁷⁾ As of yet, couplings of aryl chlorides as well as $C(sp^3)-C(sp^3)$ bond-forming reactions proceeded with lower efficacies.